How Do Perfluorinated Alkanoic Acids Elicit Cytochrome P450 to Catalyze Methane Hydroxylation? An MD and QM/MM Study.

نویسندگان

  • Chunsen Li
  • Sason Shaik
چکیده

Recent experimental studies show that usage of perfluoro decanoic acid (PFDA), as a dummy substrate, can elicit P450BM3 to perform hydroxylation of small alkanes, such as methane (ref. 17) and propane (ref. 17 and ref. 18). To comprehend the mechanism whereby PFDA operates to potentiate P450BM3 to catalyze the hydroxylation of small alkanes, we used molecular dynamics (MD) and hybrid quantum mechanical / molecular mechanical (QM/MM) calculations. The MD results show that without the PFDA, methane escapes the active site, while the presence of PFDA can potentially induce a productive Cpd I-Methane juxtaposition for rapid oxidation. Nevertheless, when only a single methane molecule is present near the PFDA, it still escapes the pocket within less than a nanosecond. However, when three methane molecules are present in the pocket, they alternate quasi-periodically such that at all times (within 10 ns), a molecule of methane is always present in the proximity of Cpd I in a reactive conformation. Our results further demonstrate that the PFDA does not exert any electrostatic catalysis, whether the PFDA is in the protonated or deprotonated forms. Taken together, we conclude that methane hydroxylation requires, in addition to PFDA, a high partial pressure of methane that will cause a high methane concentration in the active site. Further study of ethane and propane hydroxylations demonstrates that higher alkane concentration is helpful for all the three small alkanes. Thus for the smallest alkane, methane, at least three molecules are necessary whereas for the larger ethane, two molecules are needed to force one ethane to be closer to Cpd I. Finally, for propane a second molecule is helpful but not absolutely necessary; for this molecule the PFDA may well be sufficient to keep propane close to Cpd I for efficient oxidation. We therefore propose that high alkane pressure should assist small alkane hydroxylation by P450 in a manner inversely proportional to the size of the alkanes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism: Mexiletine N-Hydroxylation by Cytochrome P450 1A2.

The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing...

متن کامل

Structure and function of the cytochrome P450 peroxygenase enzymes

The cytochromes P450 (P450s or CYPs) constitute a large heme enzyme superfamily, members of which catalyze the oxidative transformation of a wide range of organic substrates, and whose functions are crucial to xenobiotic metabolism and steroid transformation in humans and other organisms. The P450 peroxygenases are a subgroup of the P450s that have evolved in microbes to catalyze the oxidative ...

متن کامل

Water as biocatalyst in cytochrome P450.

According to previous quantum mechanics/molecular mechanics (QM/MM) studies, camphor hydroxylation in cytochrome P450 is catalysed by a single water molecule which lowers the computed B3LYP/CHARMM barrier by about 4 kcal mol(-1). Gas-phase B3LYP model studies for a variety of different substrates show the generality of this effect. Its origin is an electrostatic enhancement of hydrogen bonding ...

متن کامل

A self-sufficient peroxide-driven hydroxylation biocatalyst.

Controlled, selective oxidations of unactivated C H bonds are among the most desired transformations in catalysis. Limitations to chemical oxidation catalysts include low turnover numbers, low or no regioselectivity, poor reaction specificity, their use of environmentally harmful components (for example, heavy metals or halogens), or their requirements for harsh, expensive reaction conditions. ...

متن کامل

A novel cytochrome P450 enzyme responsible for the metabolism of ebastine in monkey small intestine.

Small intestinal microsomes of cynomolgus monkeys were found to catalyze hydroxylation and dealkylation of an H(1)-antihistamine prodrug, ebastine. To identify the main enzyme responsible for ebastine hydroxylation, which has been hitherto unknown, we purified two cytochrome P450 isoforms, named P450 MI-2 and P450 MI-3, from the intestinal microsomes on the basis of the hydroxylation activity. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RSC advances

دوره 3 9  شماره 

صفحات  -

تاریخ انتشار 2013